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Figure 1. Our method obtains high-resolution skin textures from two RGB input sequences captured with polarization foils attached to
a smartphone. The core idea is to separate the skin’s diffuse and specular response by capturing one cross-polarized and one parallel-
polarized sequence. We recover an accurate geometry with multi-view stereo, fit a parametric head model, and employ a differentiable
rendering strategy to recover 4K diffuse albedo, specular gain and normal maps. These can be used with off-the-shelf rendering software,
such as Blender, to produce photo-realistic images from novel views, under novel illumination and with subsurface scattering (SSS).

Abstract

We propose a novel method for high-quality facial tex-
ture reconstruction from RGB images using a novel captur-
ing routine based on a single smartphone which we equip
with an inexpensive polarization foil. Specifically, we turn
the flashlight into a polarized light source and add a polar-
ization filter on top of the camera. Leveraging this setup,
we capture the face of a subject with cross-polarized and
parallel-polarized light. For each subject, we record two
short sequences in a dark environment under flash illu-
mination with different light polarization using the modi-
fied smartphone. Based on these observations, we recon-
struct an explicit surface mesh of the face using structure
from motion. We then exploit the camera and light co-
location within a differentiable renderer to optimize the fa-
cial textures using an analysis-by-synthesis approach. Our

All data has been captured at the Technical University of Munich.

method optimizes for high-resolution normal textures, dif-
fuse albedo, and specular albedo using a coarse-to-fine op-
timization scheme. We show that the optimized textures can
be used in a standard rendering pipeline to synthesize high-
quality photo-realistic 3D digital humans in novel environ-
ments.

1. Introduction
In recent years, we have seen tremendous advances in

the development of virtual and mixed reality devices. At
the same time, the commercial availability of such hardware
has led to a massive interest in the creation of ’digital hu-
man’ assets and photo-realistic renderings of human faces.
In particular, the democratization to commodity hardware
would open up significant potential for asset creation in
video games, other home entertainment applications, or im-
mersive teleconferencing systems. However, rendering a
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human face realistically in a virtual environment from ar-
bitrary viewpoints with changing lighting conditions is an
extremely difficult problem. It involves an accurate recon-
struction of the face geometry and skin textures, such as
the diffuse albedo, specular gain, or skin roughness. Tra-
ditionally, this problem has been approached by recording
data in expensive and carefully calibrated light stage cap-
ture setups, under expert supervision. We seek to simplify
this capture process to allow individuals to reconstruct their
own faces, while keeping the quality degradation compared
to a light stage to a minimum.

The disentanglement of geometry and material of human
faces is an extremely ill-posed problem. Current solutions
involve a capture setup with multiple cameras and light
sources, with millimeter-accurate calibration. A common
approach to disentangling face skin surface from subsurface
response is the use of polarization filters [9] in tandem with
such expensive capture setups. Given such a carefully cali-
brated capture setting, one can use differentiable rendering
to estimate the individual skin parameters in an analysis-
by-synthesis approach. While these methods do produce
visually impressive results, they are limited to high-budget
production studios.

In this paper, we propose a capture setup consisting of
only a smartphone and inexpensive polarization foils, which
can be attached to the camera lens and flashlight. Inspired
by light stage capture setups, a user captures two sequences
of their face, one with perpendicular filter alignment, and
one with parallel alignment. This allows for a two-stage op-
timization, where we first reconstruct a high-resolution dif-
fuse albedo texture of a user’s face from the cross-polarized
capture, followed by recovery of the specular albedo, nor-
mal map, and roughness from the parallel-polarized views.
Data is captured in a dark room to avoid requiring pre-
computation of an environment map. In addition to visually
compelling novel view synthesis and relighting results, our
method produces editable textures and face geometry.

In summary, the key contributions of our project are:

• We propose a commodity capture setup that combines
a smartphone’s camera and flashlight with polarization
foils. The polarization allows us to separate diffuse
from specular parts, and to reconstruct the user’s face
textures, such as diffuse albedo, specular albedo and
normal maps.

• Our proposed capture setting with the co-located cam-
era and light enables separation of skin properties from
illumination, which is of key importance for realistic
rendering of faces.

• We propose a coarse-to-fine optimization strategy with
mip-mapping, which increases sharpness of the recon-
structed appearance textures.

2. Related Work

High-fidelity face appearance capture and reconstruction
has received significant attention in the entertainment in-
dustry for creating digital humans and more recently in the
AR/VR community for generating realistic avatars. In our
context, facial appearance reconstruction means recovering
a set of high-resolution albedo, specular (gain and rough-
ness) and normal maps. Over the years, physically-based
skin scattering models have become ever more sophisticated
[6, 27, 57]; however, their input texture quality remains the
single most important factor to photo-realism.

Polarization. For some time, polarization has been used to
separate specular from diffuse [38,42,55]. These techniques
rely on the fact that single bounce specular reflection does
not alter the polarization state of incoming light. Riviere
et al. [44] propose an approach to reconstruct reflectance
in uncontrolled lighting, using the inherent polarization of
natural illumination. Nogue et al. [41] recover SVBRDF
maps of planar objects with near-field display illumination,
exploiting Brewster angle properties. Deschaintre et al. [10]
use polarization to estimate the shape and SVBRDF of an
object with normal, diffuse, specular, roughness and depth
maps from a single view. Dave et al. [8] propose a similar
approach for multi-view data. In MoRF [52], a studio setup
with polarization is used to reconstruct relightable neural
radiance fields of a face.

Lightstage capture systems. In their foundational work,
Debevec et al. [9] introduced the Lightstage system to cap-
ture human face reflectance using a dome equipped with
controlled lights, separating the diffuse from the specular
component using polarization filters. Follow-up work re-
constructs high-resolution normal maps using photometric
stereo [56], compensates for motion during the capture [54]
and expands the captured area [19].

The proposed capture studios didn’t come without lim-
itations, as the lighting environment needed to be tightly
controlled, the lighting patterns involved took a relatively
long time, and the polarization filters were challenging to
set up for multiple cameras and lights. Fyffe et al. [14–17]
proposed the use of color gradients and spectral multiplex-
ing to reduce capture time. With the objective of designing
a more practical system, Kampouris et al. [25] demonstrate
that binary gradients are sufficient for separating diffuse
from specular without polarization. Lattas et al. [29] use an
array of monitors or tablets for a practical binary gradients
capture studio. In line with this thread of research, Gotardo
et al. [20] present a multi-view setup for dynamic facial tex-
ture acquisition without the need for polarized illumination.
Riviere et al. [43] build a similar lightweight system reintro-
ducing polarization without active illumination, and model-
ing subsurface scattering. This effort was refined to include
global illumination and polarization modeling [58]. The
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Figure 2. Our optimization has three steps: In step 0, we capture data with a handheld smartphone which is equipped with polarization
foils (on the camera, as well as on the flashlight; see Figure 3). We reconstruct the facial geometry and estimate camera poses based on all
captured images using structure-from-motion and multi-view stereo. To ensure consistent texture parameterization across different subjects,
we non-rigidly fit a FLAME mesh to the scan. In a subsequent photometric optimization step (step 1), we estimate a high-resolution diffuse
texture of the skin from the cross-polarized data, as well as an initial normal map. The reconstructed geometry, diffuse and normal map are
used as input for step 2 of the optimization. Using the parallel-polarized sequence, we estimate the specular gain and final normal map in
a second photometric optimization. In addition, a global skin roughness value is optimized in this step.

proposed solutions deliver impressive visual results, but re-
quire expensive and difficult to use hardware. We propose
a solution for high-resolution facial texture reconstruction
using commodity devices, such as smartphones.

Differentiable rendering. Recent progress in differen-
tiable rendering [4, 51, 60, 61] has led to the development
of mature frameworks [23,28,40] and a number of methods
that try to jointly estimate appearance and lighting [39]. For
an overview of differentiable rendering techniques, see [26].
Luan et al. [34] use a co-located camera and light setup to
reconstruct shape and material, relying on a differentiable
renderer [61] to produce unbiased gradients for shape es-
timation on an explicit mesh. With the same co-located
setup, Zhang et al. [62] improve results by using a hybrid
volume radiance field and neural SDFs for the shape esti-
mation. While using a similar capture configuration to our
work, the previous techniques focus on shape reconstruc-
tion, while we can lean on an accurate prior for the basis of
our face shape. Furthermore, by using polarization, we can
properly decouple diffuse from specular textures.

Dib et al. [11–13] propose the estimation of face skin
textures by modelling the illumination with a virtual light
stage, and using a differentiable ray tracer [33]. The method
fits a parametric face mask to the observed images and is
able to handle self-shadowing, but complex lighting envi-
ronments can have an impact on separation of lighting and
material. Wang et al. [53] propose a capture setup with the
sun as the main light source. A FLAME [32] model is fit
to the observed data, after which geometry and material are
jointly refined using an analysis-by-synthesis approach. As
with other methods in uncontrolled lighting, separation of
individual textures remains a challenge.

Deep learning-based approaches. A wide range of work
proposes learning a neural network from large collections
of high-quality light stage data, and subsequently applying
the model to new data [5, 22, 30, 31, 36, 45, 59]. Zhang et
al. [63] propose learning a neural light transport model from
uv-space light and view direction information. At test time,
the model generalizes to novel views and lighting. Several
other works propose learning neural rendering models, ei-
ther from single-view [18, 21, 47, 64] or multi-view [48, 50]
data, for a range of different applications.

3. Method

We propose a two-step analysis-by-synthesis approach
for the estimation of high resolution face textures, as de-
picted in Figure 2. The user captures two video sequences
and a series of photographs of their face under linear-
polarized point light illumination using a smartphone. The
first sequence has the polarization filters oriented in a per-
pendicular fashion, i.e., the filter covering the camera lens is
perpendicular to the filter covering the smartphone’s flash-
light. In accordance with existing literature, we denote
this sequence as the cross-polarized sequence. The second
video sequence has parallel oriented filters and will be re-
ferred to as the parallel-polarized sequence.

We use structure-from-motion and multiview-stereo on
all captured frames jointly to compute the camera align-
ment and reconstruct coarse geometry in form of a triangle
mesh. We then non-rigidly fit the FLAME model [32] to
the scan and use it as our base geometry model. This fitting
helps us avoid noise from the multiview-stereo and provides
a consistent UV-parameterization for all subjects. Based on
this geometry, we recover the diffuse albedo texture of the
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Figure 3. Left to right: smartphone equipped with polarization
filters, cross-polarized image (perpendicular filter orientation) and
parallel-polarized image (parallel filter orientation).

subject using the cross-polarized data and photo-metric op-
timization. While keeping the diffuse albedo fixed, we esti-
mate the remaining textures based on the parallel-polarized
data. Note that we reconstruct textures using only the pho-
tographs, as these capture more detail than the video frames.
For the geometry reconstruction, we use all captured data,
as we found that this leads to more robust results compared
to only using a small set of photographs.

3.1. Capturing Polarized Data with a Smartphone

We capture one cross-polarized and one parallel-
polarized video sequence with a smartphone in a dark room,
with the smartphone’s flashlight as the only source of il-
lumination. Such a capture setup has the advantage of
not requiring optimization of the scene lighting, leading to
better separation of appearance and shading. We assume
that the flashlight is co-located with the camera lens and
that its color is white. We capture a color-checker under
both filter orientations to color-calibrate both sequences.
This is important, since the filters introduce wavelength-
dependent attenuation which tints the color of the light. We
use an affine color calibration scheme to compute the cor-
responding color correction matrix only once, and apply it
to all subsequent sequences. Furthermore, since an arbi-
trary smartphone’s flashlight does not behave like an ideal
point light (e.g., due to occlusion by the phone’s cover along
grazing directions), we pre-compute a per-pixel light atten-
uation map, that is multiplied with the final rendered im-
ages during optimization. To this end, we put markers on
a flat white surface and record a cross-polarized sequence
of the surface. We form an optimization problem with the
unknowns being the surface’s diffuse texture and the per-
pixel light attenuation map. The map is then kept fixed for
all future face texture optimizations. We refer to the supple-
mental material for more detail on this calibration step.

We ensure that all captures have consistent and fixed
camera settings: focal length, exposure time and white bal-
ance. We capture at 4K resolution and 30fps and select the
sharpest frame from every 10-frames window, using vari-
ance of the Laplacian as the sharpness metric. In addition to

Figure 4. Geometry reconstruction for subject from Figure 3.
From left to right: reconstruction via structure from motion, fit-
ted FLAME [32] mesh, ICP-based refinement of the mesh.

the video data, we capture a set of cross-polarized and a set
of parallel-polarized photographs to obtain higher-quality
data. Since the flash is much brighter for photographs than
for videos, we capture the photographs with shorter expo-
sure and lower ISO to roughly match the brightness of the
video frames. The entire capture takes about five minutes.

3.2. Geometry Reconstruction

We use Agisoft Metashape [1] on all frames jointly to ob-
tain an initial mesh reconstruction. We provide Metashape
with face masks estimated by [65], to make the reconstruc-
tion more robust to rigid motion of the head. We then fit
the FLAME model [32] to the scanned geometry, first by
optimizing the shape parameters of the FLAME face space,
and then by an ICP-based as-rigid-as-possible deformation
approach (see Figure 4). For the non-rigid deformation, we
subdivide the triangles of the face region, to obtain detailed
geometry. The resulting mesh is used as the base mesh for
the subsequent texture optimizations.

3.3. Rendering Equation & BRDF

We model the skin with a spatially-varying bidirectional
reflectance distribution function (SV-BRDF). Assuming a
point light source l in a dark environment, the rendering
equation that defines the outgoing radiance Lo(x, ω), at
point x with normal direction n⊤ in direction ω, has the
following simplified form:

Lo(x, ω) =
f(x, ω)(n⊤ω)Li(x, ω)

|x − l|22
. (1)

Here, we make use of the fact that the light direction aligns
with the view direction, i.e., ωi = ωo = ω. The BRDF
f(x, ω) has a diffuse component fd, and a specular com-
ponent fs. We use the Cook-Torrance [7] BRDF for our
specular term:

fs(x, ω) = ks(x)
D(ω,n⊤, α)G(n, ω)F (n, ω)

4(n⊤ω)(n⊤ω)
, (2)

with ks being the spatially-varying specular gain and α a
global roughness blend factor for the Blinn-Phong distri-
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bution term D of the 2-lobe mix (D12 and D48) suggested
by [43]. G denotes the geometry term of the Cook-Torrance
BRDF model. We use Shlick’s approximation [46] for the
Fresnel term F :

F (n, ω) = F0 + (1− F0)(1− n⊤ω)5. (3)

To model the skin’s diffuse response, we implement the
BRDF model proposed by Ashikhmin and Shirley [2, 3],
that accounts for the fact that a portion of the light has al-
ready scattered before penetrating the skin surface:

fd(x, ω) =
28kd(x)
23π

(1− F0)(1− (1− n⊤ω

2
)5)2, (4)

where F0 = 0.04 is the reflectance of the skin at normal in-
cidence. Indirect light bouncing from the capture environ-
ment and on the captured face itself might have a significant
contribution to pixel intensity at grazing angles, so we also
add a Fresnel-modulated ambient term to our BRDF f :

fa(x, ω) = ka(x)(1− (1− F0)(1− (1− n⊤ω

2
)5)2), (5)

with an ambient map ka which is regularized to be smooth
via a total variation loss and close to zero.

Note that using a diffuse scattering model for the op-
timization is compatible with state-of-the-art physically-
based subsurface scattering skin shading [6, 57], as shown
in Figure 1. Production-ready subsurface scattering models
typically include an albedo inversion stage, which takes a
diffuse albedo as input, and converts it to extinction coeffi-
cients for the volume rendering random walk.

3.4. Optimization

The objective of the photometric optimization step is to
minimize the difference between rendered images Î and
color-corrected target images I:

L(Î , I) =
∣∣∣W ·

(
Î − I

)∣∣∣ , (6)

with Î = M · Lo, where M is the pre-computed light at-
tenuation map, that accounts for uneven light distribution
in different directions. We apply a per-pixel loss weight
W based on the respective mip level and the angle between
viewing direction and normal n⊤ω to improve sharpness.
Specifically, to ensure that distant or grazing angle observa-
tions do not blur the resulting textures, for each pixel that is
projected from the target image to texture space, we calcu-
late which mip level l would need to be looked up in classi-
cal forward rendering. W is set to (n⊤ω)(1− l) if the pixel
corresponds to a mip level below 1, and zero otherwise.

We optimize L(Î , I) in two steps, using a coarse-to-fine
optimization strategy in each. In the first step, we only use
the cross-polarized images to optimize the spatially-varying

Method PSNR ↑ SSIM ↑ LPIPS ↓
NLT [63] 31.51 0.96 0.11
NextFace [11] 22.85 0.89 0.31

Ours 32.37 0.96 0.10

Table 1. We compare our method to NLT and NextFace on valida-
tion frames over 10 different subjects.

diffuse albedo texture kd(x) and an initial tangent-space
normal map n(x), while assuming fs(·) = 0 for the specu-
lar term. In the second step, we fix the diffuse texture and
optimize for specular gain ks(x), specular roughness α, and
the final normal map n(x). To account for potentially dif-
ferent light attenuation in the cross and parallel-polarized
filter settings, we also optimize per-channel scaling factors
for the diffuse texture. The optimization is performed en-
tirely in texture space. In each step, we employ a four-level
coarse-to-fine optimization strategy, starting with a texture
resolution of 512 × 512, and increasing the size by a fac-
tor of two after convergence of each level, up to the final
resolution of 4096× 4096.

We implement our optimization framework in PyTorch,
using nvdiffrast [28] as our differentiable renderer. We op-
timize on batches of 4 images, using Adam with an ini-
tial learning rate lr0 = 10−3 for all parameters at the
beginning of every coarse-to-fine step, and updating it to
lr = lr0 · 10−0.001t in every iteration t. We scale the
FLAME mesh to unit size and set the light intensity to 10.
The total optimization time is about 90 minutes.

4. Results
In this section, we present texture reconstruction and ren-

dering results on several subjects. Figure 5 shows the tex-
ture reconstruction on several actors of different ethnicity.
Our method is able to reconstruct pore-level detail in the
diffuse, specular and normal maps. Further, we evaluate the
quality of our reconstructed textures by rendering the mesh
from novel views and under novel illumination. Figure 6
shows that our method faithfully reconstructs the skin’s ap-
pearance under novel views and lighting.
Comparison to state of the art. We perform both a qualita-
tive and quantitative evaluation of our method and compare
to state-of-the-art methods for relighting and texture recon-
struction. During optimization, we hold out a validation
frame on which we compute image metrics.

Neural Light Transport. Neural Light Transport [63]
is a deep learning-based method that takes as input pre-
computed diffuse base, light-cosine and view-cosine uv-
space maps. The diffuse base is computed as the average of
all observations. The cosine maps contain per-texel cosines
of the angles between the normal vector and the light or
view vector. Based on these inputs, as well as nearest neigh-
bor observations, a neural network learns to predict the final
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Figure 5. We show skin texture reconstructions of several actors of different skin type. The rendered images closely match the reference
target images, and we achieve good separation of diffuse and specular textures.
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Figure 6. We evaluate on a validation frame from a novel viewpoint and with novel lighting that was held out during the optimization. As
visible in the crop regions, our method is able to synthesize sharper texture details and specular highlights compared to NLT [63].

Figure 7. Comparison to NextFace [11] in terms of reconstructed
appearance textures.

shaded image. Since the method does not take light inten-
sity and falloff into account, we optimize the rendered val-
idation image’s brightness to match the target as closely as
possible, before computing the rendering error.

NextFace. NextFace [11–13] first fits a morphable face
model to the input frames, then estimates the face shape,
pose, lighting, statistical diffuse and specular albedos by
minimizing a photo-consistency loss between the target im-
age and a ray traced estimate. In a final step, the statistical
albedos are refined on a per-texel basis. We conducted sev-
eral experiments with different illumination conditions and
number of frames, including an experiment on our data for
which we replaced the spherical harmonics lighting repre-
sentation with a small area light, modelling our flashlight.

As shown in Table 1, our approach achieves favorable
image metrics. Figure 6 compares our method to NLT on
novel lighting and viewpoint. NLT closely matches the tar-
get by using nearby camera views, but specular highlights
are often blurry, and the low number of training views re-
sults in the model producing artifacts in shadowed areas.
We obtained the best NextFace results in an experiment
with uniform illumination using three frames that cover the
whole face region. As shown in Figure 7, inaccuracies in the
face model fitting lead to somewhat blurry textures. This
issue is exacerbated by adding more frames. Using fewer
frames degraded the separation of the diffuse and specular
textures. Our method is able to overcome these issues by
accurately fitting a geometric model to the input data and
by using polarization to separate the individual textures.

Ablation Studies. We conduct ablation studies to justify
our choice of capture setup and training parameters. In Fig-
ure 8, we show that accounting for the direction-dependent
light attenuation of a smartphone’s flashlight leads to an
overall lower error in the re-rendered images. In the same
figure, we also show the importance of accounting for the
Fresnel effect when reconstructing the diffuse texture. A
purely Lambertian BRDF will not be able to model the
skin’s diffuse response at all angles. In Figure 9, we show
that optimizing textures without cross-polarization will leak
specular information into the diffuse texture.

Coarse-to-fine optimization and mipmapping. Pixels of
the target images have different footprints in uv-space, de-
pending on distance and angle between camera and surface.
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Figure 8. Ignoring the angle-dependent flashlight attenuation, the
Fresnel effect, or the ambient light leads to an incorrect reconstruc-
tion, that can no longer reproduce the shading from all views. We
account for these effects to closely match the target data.

Figure 9. We compare joint optimization of all textures to our
full approach on a purely diffuse render. Optimizing jointly leaks
specular and normal map information into the diffuse texture.

Weighting the loss of each pixel equally leads to blur in the
reconstruction. Optimizing coarse-to-fine, where at each
resolution we use only pixels with the corresponding uv-
space footprint, helps us reconstruct additional detail in the
textures. Figure 10 shows a comparison between our full
approach and a direct optimization of the highest resolution
texture. We additionally show the decrease in quality when
optimizing only on video frames (w/o photographs).
Runtime and memory consumption. Including 1 hour
spent on MVS, our method needs about 2.5h to reconstruct
a face. Photo-metric skin texture reconstruction takes about
90 minutes on an Nvidia RTX A6000. We reconstruct
facial geometry with Metashape using an average of 420
video frames and 70 photographs. At a texture resolution of
4096×4096 and target image resolution of 3840×2160, the
photo-metric optimization requires 30GB of GPU memory.
In comparison, NLT takes about 10h and NextFace about 6h
given the same number of frames.
Discussion & Limitations. Our method reconstructs high-
quality face textures with a low-cost capture routine. How-
ever, it is restricted to static expressions, i.e., it does not
handle dynamically changing face geometry and textures.
An avenue for future research is the reconstruction of dy-

Figure 10. To increase sharpness, we optimize from photographs,
instead of video frames. Using only pixels of the appropriate mip
level in a coarse-to-fine approach further enhances results.

namic expressions by fitting a parametric model with con-
sistent mesh topology to each frame, and optimizing over
the entire non-rigid sequence. Our method does not explic-
itly handle global illumination. A differentiable path tracer
could potentially improve results in the concavities of the
eye region. As we assume a static face with closed mouth
and closed eyes, we only recover the skin area of a face.
Eyes, mouth interior and hair are a subject of future work.

5. Conclusion

We have presented a practical and inexpensive method of
capturing high-resolution textures of a person’s face by cou-
pling commodity smartphones and polarization foils. The
co-location of the camera lens and light source allows us to
reduce the problem complexity and separate material from
shading information. As a result, we obtain high-resolution
textures of the skin area of the human face. We believe that
polarization is a powerful tool for material recovery in the
real world, and future smartphones could benefit from in-
cluding filters directly in the hardware. Overall, we believe
that our work is a stepping stone towards democratizing the
creation of digital human face assets by making it more ac-
cessible to smaller production studios or individual users.
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APPENDIX
In this appendix, we describe in more detail the pre-

processing steps that are necessary to run our method.
Specifically, in Section A we explain in detail how to cali-
brate the camera light and sensor and in Section B we give
more detail on fitting the FLAME mesh to the Structure-
from-Motion scan. In addition to that, we discuss differ-
ences to prior work in Section C.

A. Calibration
To use a smartphone as a tool to capture high-quality

textures of human faces, we apply a calibration step related
to the flashlight and camera sensor. Specifically, we com-
pute a light attenuation map to take into account vignetting
effects and the fact that the flashlight is not an ideal point
light source, and we color-calibrate the cross-polarized and
parallel-polarized images.
Light attenuation map. In the general case, a smart-
phone’s flashlight does not behave like an ideal point light.
We observed a significant decrease of light intensity to-
wards grazing angles. To account for this effect, we com-
pute a per-pixel attenuation map that we multiply with our
rendered images to match the observations. To this end,
we put calibration markers on a white wall and recorded
a cross-polarized sequence (see Figure 11). The markers
allow us to estimate camera poses for the sequence and pro-
vide us a sparse point cloud to which we fit a plane. Finally,
we pose an optimization problem:

argmin
M,kd

∣∣∣(Î − I
)∣∣∣ , (7)

with Î = M·Lo, where M is the light attenuation map, and
kd the diffuse texture. Once optimized, we keep M fixed
for all subsequent face texture optimizations.
Color correction. We color-calibrate both the cross-
polarized images and the parallel-polarized images using
pre-recorded images of a Macbeth colorchecker board. We
compute an affine color transformation matrix to match
these calibration images to a reference color chart. This
calibration step is done once for the smartphone and then
used for all recorded sequences. The effect of this calibra-
tion step is shown in Figure 12.
Camera settings. We record our data using a Samsung
Galaxy S21 FE 5G. For the video sequences, we use an ISO
of 800 and exposure time of 1/60s. The photographs were
shot with an ISO of 200 and exposure time of 1/90s. The
smartphone’s white balance was set to 4900K.

B. Geometry Estimation
To estimate the geometry of a subject, we use the

Structure-from-Motion method from MetaShape [1] on the

Figure 11. To calibrate the light of the smartphone, we record a
cross-polarized sequence of a white planar surface with markers
for tracking. We fit a UV-parameterized plane to the data and opti-
mize for a light attenuation map which we use for all experiments.

Figure 12. We found that the polarization filters introduce a color
shift depending on the polarization direction. To this end, we per-
form a color calibration with a Macbeth colorchecker board which
we capture in both scenarios (cross-, and parallel-polarized). We
use an affine color correction to match both captures, and apply
this transformation to recordings of all subjects.

captured data (see Figure 13 for a camera pose visualiza-
tion). The resulting geometry is noisy and might contain
holes, so we fit a 3DMM-based face model to the recon-
struction. Specifically, we use PIPNet [24] to detect land-
marks on a front-facing image of the face. These are then
projected to 3D using the known camera extrinsic and in-
trinsic matrices. Using Procrustes’s algorithm, we get a
coarse alignment between the FLAME face model [32] and
the 3D landmarks. We further improve the alignment by
optimizing for both a rigid transform between FLAME and
nearby scan vertices, as well as the FLAME shape vector to
non-rigidly fit the scan. The resulting mesh is subdivided
in the face region by a factor of 16, and the eyes are re-
moved from the mesh. Finally, we employ an As-Rigid-
As-Possible (ARAP) [49] non-rigid deformation strategy to
refine the face mesh, to better align with the reconstruction
of MetaShape.
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Figure 13. Distribution of cross-polarized (red) and parallel-
polarized (blue) views.

C. Comparison to Prior Work

In this section, we explain in more detail the differences
between our proposed method and results, and some of the
existing solutions for light stage data to which we could not
compare directly. Furthermore, we discuss potential bene-
fits of capture setups with independent view and light direc-
tions.
MoRF [52] is a generative model trained on a high-quality
image database with polarization-based separation of dif-
fuse and specular reflectance. It can generate a volumetric
representation of a face based on latent ID codes, which
can be optimized to fit new subjects. The database itself is
created using the capture setup from [43]. Images of a sub-
ject can be rendered by first feeding the subject-specific ID
code into a deformation and a canonical MLP. The canon-
ical MLP is composed of a density, diffuse and specular
branch, and the output of these branches is used in a volu-
metric rendering formulation, similar to [37], to render the
final image. This is in contrast to our approach, which uses
a triangle mesh to represent geometry, and which defines the
SVBRDF on the surface of the mesh. The major advantage
of MoRF is the fewer number of images it requires at test
time and better facial hair and eye handling. This is, how-
ever, offset by its limited performance in accurately fitting
to faces of new subjects. Furthermore, the material is not
separated from lighting and the results are over-smoothed
due to the low-order spherical harmonics lighting approxi-
mation.
Deep Relightable Appearance Models for Animatable
Faces [5] proposes a conditional variational auto-encoder
(CVAE) architecture to predict mesh vertices, a correspond-
ing texture warp field and light-dependent textures. A late-
conditioned model is first trained on light stage OLAT (one
light at a time) data to predict a lit texture map of a sub-

ject’s face from its average texture (nearest fully-lit frame
averaged across all cameras) and an initial estimate of the
mesh vertices (provided by an off-the-shelf face tracker).
This model has good generalization ability, but is not suit-
able for real-time rendering. Making use of the good gen-
eralization ability of the trained model, a large dataset of
synthetic images is generated and used to train an early-
conditioned model which can render faces under complex
lighting in real-time. The biggest advantage compared to
our approach is the capture and rendering of dynamic se-
quences. Some of the drawbacks include the necessity of a
light stage capture setup and the long training time. Futher-
more, the model does not separate lighting from material, so
its output can not be used in a standard rendering pipeline,
or for the creation of virtual assets.
Near-Instant Capture of High-Resolution Facial Geom-
etry and Reflectance [17] performs multi-view color-space
analysis to separate diffuse from specular reflectance. Pho-
tometric estimation of specular normals further refines ge-
ometry compared to the reconstructed base mesh. Similar to
our method, and in contrast to the previously described deep
learning-based methods, the output is a set of textures that
can used in a standard rendering pipeline to render photo-
realistic images of a person’s face. The carefully calibrated
high-cost capture setup, consisting of 24 DSLR cameras,
enables reconstruction of fine-scale detail and cannot be
matched by current smartphone camera technology. Nev-
ertheless, we see potential benefit of our method’s flexibil-
ity to capture specular highlights from arbitrary viewpoints,
compared to a predetermined set of fixed viewpoints. An-
other drawback is the necessity of a manual cleanup of the
reconstructed multi-view stereo mesh, which is avoided by
our method’s automated FLAME fitting.

Several prior works [29, 35, 47] on face reconstruction
and relighting use a capture setup, in which the light direc-
tion is independent from the view direction. While we see
potential benefit for convergence speed from the additional
constraints provided by such capture setups, given multiple
views, our co-located data also provides enough constraints
for successful convergence. The shadowing-masking term
G is the only term that is directly linked to both the view
and light vector. However, by reciprocity of the BRDF, the
dependence on view and light direction is the same. Instead
of having independent view and light vectors, we found it
more important to have a good distribution of the angles be-
tween surface normal and view (or light) vector to recover
a complete specular and normal map. This is in contrast
to [29] and [47] where both camera and light are mostly
front-facing.
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